Problem: 0(0(1(x1))) -> 0(0(2(1(2(x1))))) 0(0(1(x1))) -> 0(0(3(1(4(x1))))) 0(1(0(x1))) -> 0(0(1(2(4(x1))))) 0(1(0(x1))) -> 2(1(2(0(0(x1))))) 0(1(0(x1))) -> 0(0(1(2(2(4(x1)))))) 0(1(0(x1))) -> 0(0(2(4(1(4(x1)))))) 0(4(0(x1))) -> 3(4(3(2(0(0(x1)))))) 0(0(1(0(x1)))) -> 0(0(0(1(4(x1))))) 0(0(4(1(x1)))) -> 0(0(2(1(4(x1))))) 0(0(4(1(x1)))) -> 0(0(2(1(4(3(x1)))))) 0(1(0(4(x1)))) -> 0(0(3(4(1(2(x1)))))) 0(1(3(0(x1)))) -> 0(0(3(1(4(x1))))) 0(1(3(0(x1)))) -> 0(3(0(1(2(x1))))) 0(1(3(0(x1)))) -> 0(0(1(3(2(5(x1)))))) 0(1(4(0(x1)))) -> 0(2(0(3(1(4(x1)))))) 0(1(5(1(x1)))) -> 2(1(1(4(5(0(x1)))))) 0(1(5(4(x1)))) -> 1(2(4(2(5(0(x1)))))) 0(1(5(4(x1)))) -> 4(1(0(3(2(5(x1)))))) 0(1(5(4(x1)))) -> 5(0(2(4(1(4(x1)))))) 0(3(0(1(x1)))) -> 0(0(3(1(2(2(x1)))))) 0(3(1(0(x1)))) -> 0(0(3(1(4(x1))))) 0(4(0(1(x1)))) -> 0(0(2(1(4(x1))))) 0(4(5(1(x1)))) -> 1(2(4(2(5(0(x1)))))) 0(4(5(1(x1)))) -> 3(1(4(5(0(2(x1)))))) 0(4(5(1(x1)))) -> 3(2(5(1(4(0(x1)))))) 0(4(5(1(x1)))) -> 5(3(0(5(1(4(x1)))))) 0(4(5(1(x1)))) -> 5(5(0(5(1(4(x1)))))) 0(4(5(4(x1)))) -> 5(2(4(4(0(4(x1)))))) 0(5(1(0(x1)))) -> 0(0(5(1(2(x1))))) 3(5(0(1(x1)))) -> 3(0(2(1(2(5(x1)))))) 3(5(1(0(x1)))) -> 0(5(1(3(2(x1))))) 3(5(1(0(x1)))) -> 2(1(2(0(5(3(x1)))))) 3(5(1(0(x1)))) -> 3(1(2(2(0(5(x1)))))) 3(5(1(0(x1)))) -> 5(1(3(2(0(2(x1)))))) 0(1(3(3(0(x1))))) -> 3(3(2(0(0(1(x1)))))) 0(1(3(5(1(x1))))) -> 1(1(3(4(5(0(x1)))))) 0(1(3(5(1(x1))))) -> 1(1(5(0(3(3(x1)))))) 0(1(5(2(0(x1))))) -> 5(0(3(1(0(2(x1)))))) 0(1(5(4(1(x1))))) -> 5(3(4(1(0(1(x1)))))) 0(1(5(4(4(x1))))) -> 4(5(2(1(4(0(x1)))))) 0(1(5(4(4(x1))))) -> 5(0(4(3(4(1(x1)))))) 0(3(1(0(4(x1))))) -> 0(0(3(1(2(4(x1)))))) 0(4(3(3(0(x1))))) -> 0(2(3(4(0(3(x1)))))) 0(4(5(2(0(x1))))) -> 0(2(2(5(0(4(x1)))))) 0(5(1(5(1(x1))))) -> 5(5(3(0(1(1(x1)))))) 3(0(1(5(4(x1))))) -> 0(5(3(4(1(2(x1)))))) 3(5(0(1(0(x1))))) -> 5(1(2(0(0(3(x1)))))) 3(5(4(0(0(x1))))) -> 5(0(3(0(4(4(x1)))))) 3(5(5(0(1(x1))))) -> 5(5(0(3(1(2(x1)))))) Proof: Bounds Processor: bound: 1 enrichment: match automaton: final states: {6,5} transitions: 51(15) -> 16* 51(97) -> 98* 51(67) -> 68* 51(139) -> 140* 51(74) -> 75* 51(59) -> 60* 51(176) -> 177* 51(61) -> 62* 51(123) -> 124* 51(43) -> 44* 51(135) -> 136* 31(45) -> 46* 31(137) -> 138* 31(191) -> 192* 31(186) -> 187* 31(100) -> 101* 01(27) -> 28* 01(154) -> 155* 01(29) -> 30* 01(14) -> 15* 01(136) -> 137* 01(96) -> 97* 01(46) -> 47* 01(21) -> 22* 01(148) -> 149* 01(73) -> 74* 01(190) -> 191* 11(70) -> 71* 11(167) -> 168* 11(122) -> 123* 11(47) -> 48* 11(17) -> 18* 11(189) -> 190* 11(99) -> 100* 11(41) -> 42* 11(173) -> 174* 11(153) -> 154* 11(18) -> 19* 11(165) -> 166* 11(155) -> 156* 41(85) -> 86* 41(187) -> 188* 41(87) -> 88* 41(149) -> 150* 41(69) -> 70* 41(39) -> 40* 41(156) -> 157* 41(121) -> 122* 41(71) -> 72* 41(16) -> 17* 41(98) -> 99* 41(93) -> 94* 41(48) -> 49* 41(185) -> 186* 41(150) -> 151* 21(40) -> 41* 21(72) -> 73* 21(124) -> 125* 21(119) -> 120* 21(44) -> 45* 21(19) -> 20* 21(151) -> 152* 21(111) -> 112* 21(113) -> 114* 21(38) -> 39* 21(175) -> 176* 21(95) -> 96* 00(2) -> 5* 00(4) -> 5* 00(1) -> 5* 00(3) -> 5* 10(2) -> 1* 10(4) -> 1* 10(1) -> 1* 10(3) -> 1* 20(2) -> 2* 20(4) -> 2* 20(1) -> 2* 20(3) -> 2* 30(2) -> 6* 30(4) -> 6* 30(1) -> 6* 30(3) -> 6* 40(2) -> 3* 40(4) -> 3* 40(1) -> 3* 40(3) -> 3* 50(2) -> 4* 50(4) -> 4* 50(1) -> 4* 50(3) -> 4* 1 -> 167,113,87,61,27 2 -> 153,95,69,43,14 3 -> 173,119,93,67,29 4 -> 165,111,85,59,21 15 -> 121* 16 -> 38* 20 -> 28,15,155,121,5 22 -> 15* 28 -> 15* 30 -> 15* 42 -> 30,149,28,155,121,5 49 -> 28,155,121,5 60 -> 44* 62 -> 44* 68 -> 44* 70 -> 148* 71 -> 135* 75 -> 22,30,149,28,155,121,5 86 -> 70* 88 -> 70* 94 -> 70* 101 -> 30,15,149,121,5 112 -> 96* 114 -> 96* 120 -> 96* 123 -> 175* 125 -> 100* 137 -> 139* 138 -> 74* 140 -> 74* 152 -> 74* 154 -> 189,185 157 -> 137* 166 -> 154* 168 -> 154* 174 -> 154* 177 -> 48* 188 -> 73* 192 -> 139* problem: Qed